Abstract
The rise of antimicrobial resistance poses a critical public health threat worldwide. While antimicrobial photodynamic therapy (aPDT) has demonstrated efficacy against multidrug-resistant (MDR) bacteria, its effectiveness can be limited by several factors, including the delivery of the photosensitizer (PS) to the site of interest and the development of bacterial resistance to PS uptake. There is a need for alternative methods, one of which is superhydrophobic antimicrobial photodynamic therapy (SH-aPDT), which we report here. SH-aPDT is a technique that isolates the PS on a superhydrophobic (SH) membrane, generating airborne singlet oxygen (1O2) that can diffuse up to 1 mm away from the membrane. In this study, we developed a SH polydimethylsiloxane dressing coated with PS verteporfin. These dressings contain air channels called a plastron for supplying oxygen for aPDT and are designed so that there is no direct contact of the PS with the tissue. Our investigation focuses on the efficacy of SH-aPDT on biofilms formed by drug-sensitive and MDR strains of Gram-positive (Staphylococcus aureus and S. aureus methicillin-resistant) and Gram-negative bacteria (Pseudomonas aeruginosa and P. aeruginosa carbapenem-resistant). SH-aPDT reduces bacterial biofilms by approximately 3 log with a concomitant decrease in their metabolism as measured by MTT. Additionally, the treatment disrupted extracellular polymeric substances, leading to a decrease in biomass and biofilm thickness. This innovative SH-aPDT approach holds great potential for combating antimicrobial resistance, offering an effective strategy to address the challenges posed by drug-resistant wound infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.