The magnitude of the singlet-triplet gap in dichloromethylene (CCl(2)) has been a point of controversy in the recent literature. In this study, we report single vibronic level emission spectra of the A(1)B(1)-->X[combining tilde](1)A(1) system of the carbene C(35)Cl(2), which probes the vibrational structure of the X[combining tilde](1)A(1) state up to approximately 10,000 cm(-1) above the vibrationless level. By the careful selection of bands where complete isotope and K(a)' selectivity in excitation was possible, we measured K(a)'-sorted emission spectra in order to test the previously established hypothesis [M.-L. Liu, C.-L. Lee, A. Bezant, G. Tarczay, R. J. Clark, T. A. Miller and B.-C. Chang, Phys. Chem. Chem. Phys., 2003, 5, 1352] that unassigned lines lying above approximately 5,000 cm(-1) belong to levels of the ã(3)B(1) state. The K(a)'-sorting method discriminates between singlet and triplet levels via the (A''-B[combining macron]'') rotational constant, which is significantly larger for pure triplet levels due to the larger equilibrium bond angle. In the region between 3,500 and 9,000 cm(-1) above the vibrationless level of the X[combining tilde](1)A(1) state, we find only a very modest increase in (A''-B[combining macron]''), and approximately 86% of the lines observed between 5,000 and 9,000 cm(-1) can be assigned to X[combining tilde](1)A(1) levels within 3 standard deviations of our Dunham expansion fit, which included more than 140 levels in total. A nearly complete set of Dunham parameters was determined for the C(35)Cl(2) isotopomer, and the X[combining tilde](1)A(1) state term energies up to 4,000 cm(-1) are in excellent agreement with recent variational calculations of Tarczay, et al. [G. Tarczay, T. A. Miller, G, Czakó and A. G. Császár, Phys. Chem. Chem. Phys., 2005, 7, 2881]. Finally, the implication of our results for the singlet-triplet gap in dichloromethylene is discussed.
Read full abstract