Abstract
We report the first gas-phase observation of the electronic spectrum of a simple halocarbocation, CH2I+. The ion was generated rotationally cold (Trot approximately 20 K) using pulsed discharge methods and was detected via laser spectroscopy. The identity of the spectral carrier was confirmed by modeling the rotational contour observed in the excitation spectra and by comparison of ground state vibrational frequencies determined by single vibronic level emission spectroscopy with Density Functional Theory (DFT) predictions. The transition was assigned as 3A1 <-- X1A1. This initial detection of the electronic spectrum of a halocarbocation in the gas phase should open new avenues for study of the structure and reactivity of these important ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.