Previous studies mostly use single-type features to establish a prediction model. We aim to develop a comprehensive prediction model that effectively identify patients with poor prognosis for single hepatocellular carcinoma (HCC) based on artificial intelligence (AI). Patients and methods: 236 single HCC patients were studied to establish a comprehensive prediction model. We collected the basic information of patients and used AI to extract the features of magnetic resonance (MR) images. The clinical model based on linear regression (LR) algorithm (AUC: 0.658, 95%CI: 0.5021-0.8137), the radiomics model and deep transfer learning (DTL) model based on light gradient-boosting machine (Light GBM) algorithm (AUC: 0.761, 95%CI: 0.6326-0.8886 and AUC: 0.784, 95%CI: 0.6587-0.9087, respectively) were the optimal prediction models. A comparison revealed that the integrated nomogram had the largest area under the receiver operating characteristic curve (AUC) (all P<0.05). In the training cohort, the integrated nomogram was predictive of recurrence-free survival (RFS) as well as overall survival (OS) (C-index: 0.735 and 0.712, P<0.001). In the test cohort, the integrated nomogram also can predict RFS and OS (C-index: 0.718 and 0.740, P<0.001) in patients. The integrated nomogram composed of signatures in the prediction models can not only predict the postoperative recurrence of single HCC patients but also stratify the risk of OS after the operation.
Read full abstract