Abstract

Local feature descriptor plays a key role in different image classification applications. Some of these methods such as local binary pattern and image gradient orientations have been proven effective to some extent. However, such traditional descriptors which only utilize single-type features, are deficient to capture the edges and orientations information and intrinsic structure information of images. In this paper, we propose a kernel embedding multiorientation local pattern (MOLP) to address this problem. For a given image, it is first transformed by gradient operators in local regions, which generate multiorientation gradient images containing edges and orientations information of different directions. Then the histogram feature which takes into account the sign component and magnitude component, is extracted to form the refined feature from each orientation gradient image. The refined feature captures more information of the intrinsic structure, and is effective for image representation and classification. Finally, the multiorientation refined features are automatically fused in the kernel embedding discriminant subspace learning model. The extensive experiments on various image classification tasks, such as face recognition, texture classification, object categorization, and palmprint recognition show that MOLP could achieve competitive performance with those state-of-the art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.