BackgroundFor prostate electrosurgery, where real-time surveillance screens are relied upon for operations, manual identification of the prostate capsule remains the primary method. With the need for rapid and accurate detection becoming increasingly urgent, we set out to develop a deep learning approach for detecting the prostate capsule using endoscopic optical images.MethodsOur method involves utilizing the Simple, Parameter-Free Attention Module(SimAM) residual attention fusion module to enhance the extraction of texture and detail information, enabling better feature extraction capabilities. This enhanced detail information is then hierarchically transferred from lower to higher levels to aid in the extraction of semantic information. By employing a forward feature-by-feature hierarchical fusion network based on the 3D residual attention mechanism, we have proposed an improved single-shot multibox detector model.ResultsOur proposed model achieves a detection precision of 83.12% and a speed of 0.014 ms on NVIDIA RTX 2060, demonstrating its effectiveness in rapid detection. Furthermore, when compared to various existing methods including Faster Region-based Convolutional Neural Network (Faster R-CNN), Single Shot Multibox Detector (SSD), EfficientDet and others, our method Attention based Feature Fusion Single Shot Multibox Detector (AFFSSD) stands out with the highest mean Average Precision (mAP) and faster speed, ranking only below You Only Look Once version 7 (YOLOv7).ConclusionsThis network excels in extracting regional features from images while retaining the spatial structure, facilitating the rapid detection of medical images.
Read full abstract