Conventional x-ray imaging and fluoroscopy have limitations in quantitation due to several challenges, including scatter, beam hardening, and overlapping tissues. Dual-energy (DE) imaging, with its capability to quantify area density of specific materials, is well-suited to address such limitations, but only if the dual-energy projections are acquired with perfect spatial and temporal alignment and corrected for scatter. In this work, we propose single-shot quantitative imaging (SSQI) by combining the use of a primary modulator (PM) and dual-layer (DL) detector, which enables motion-free DE imaging with scatter correction in a single exposure. The key components of our SSQI setup include a PM and DL detector, where the former enables scatter correction for the latter while the latter enables beam hardening correction for the former. The SSQI algorithm allows simultaneous recovery of two material-specific images and two scatter images using four sub-measurements from the PM encoding. The concept was first demonstrated using simulation of chest x-ray imaging for a COVID patient. For validation, we set up SSQI geometry on our tabletop system and imaged acrylic and copper slabs with known thicknesses (acrylic: 0-22.5cm; copper: 0-0.9mm), estimated scatter with our SSQI algorithm, and compared the material decomposition (MD) for different combinations of the two materials with ground truth. Second, we imaged an anthropomorphic chest phantom containing contrast in the coronary arteries and compared the MD with and without SSQI. Lastly, to evaluate SSQI in dynamic applications, we constructed a flow phantom that enabled dynamic imaging of iodine contrast. Our simulation study demonstrated that SSQI led to accurate scatter correction and MD, particularly for smaller focal blur and finer PM pitch. In the validation study, we found that the root mean squared error (RMSE) of SSQI estimation was 0.13cm for acrylic and 0.04mm for copper. For the anthropomorphic phantom, direct MD resulted in incorrect interpretation of contrast and soft tissue, while SSQI successfully distinguished them quantitatively, reducing RMSE in material-specific images by 38%-92%. For the flow phantom, SSQI was able to perform accurate dynamic quantitative imaging, separating contrast from the background. We demonstrated the potential of SSQI for robust quantitative x-ray imaging. The integration of SSQI is straightforward with the addition of a PM and upgrade to a DL detector, which may enable its widespread adoption, including in techniques such as radiography and dynamic imaging (i.e., real-time image guidance and cone-beam CT).
Read full abstract