This article describes a methodology for the identification of cooling performance of a natural gas cooler relative to the shape of its heat-transfer surface and presents the outputs of numerical solutions for four different shapes of heat-transfer surfaces in coolers designated as C_A, C_B, C_C and C_D. Calculations were carried out for a cooler with a single row of tubes, and for coolers with two through six rows of tubes that were positioned above one another with an alternating arrangement. In all of the surface shapes, the boundary conditions were respected in order to facilitate the identification of the shape of the heat-transfer surface which is the most appropriate for achieving maximum cooling performance. Out of these four shapes, the best results were observed with the heat-transfer surface of the cooler designated as C_A. The cooling performance of a 1 m long tube with such a surface was 1,650 W.
Read full abstract