We describe a novel method for localizing a fluorescent inclusion in a homogeneous turbid medium through the use of time-resolved techniques. Based on the calculation of the mean time of the fluorescence curves, the method does not require a priori knowledge of either the fluorescence lifetime or the mean time of the instrument response function since it adopts a differential processing approach. Theoretical expressions were validated and experiments for assessing the accuracy of localization were carried out on liquid optical phantoms with a small fluorescent inclusion. The illumination and detection optical fibers were immersed in the medium to achieve infinite medium geometry as required by the model used. The experimental setup consisted of a time-correlated single-photon counting system. Submillimeter accuracy was achieved for the localization of the inclusion.
Read full abstract