C–C coupling is of utmost importance in the electrocatalytic reduction of CO2, as it governs the selectivity of diverse product formation. Nevertheless, the difficulties to directly observe C–C coupling pathways at a specific nanocavity hinder the advances in catalysts and electrolyzer design for efficient high-value hydrocarbon production. Here we develop a nano-confined Raman technology to elucidate the influence of the local electric field on the evolution of C–C coupling intermediates. Through precise adjustments to the Debye length in nanocavities of a copper catalyst, the overlapping of electrical double layers drives a transition in the C–C coupling pathway at a specific nanocavity from *CHO–*CO coupling to the direct dimerization of *CO species. Experimental evidence and simulations validate that a reduced potential drop across the compact layer promotes a higher yield of CO and promotes the direct dimerization of *CO species. Our findings provide insights for the development of highly selective catalyst materials tailored to promote specific products.