Abstract

AbstractSurface‐enhanced Raman spectroscopy (SERS) has become a sensitive detection technique for biochemical analysis. Despite significant research efforts, most SERS substrates consisting of single‐resonant plasmonic nanostructures on the planar surface suffer from limitations of narrowband SERS operation and unoptimized nano‐bio interface with living cells. Here, it is reported that nanolaminate plasmonic nanocavities on 3D vertical nanopillar arrays can support a broadband SERS operation with large enhancement factors (>106) under laser excitations at 532, 633, and 785 nm. The multi‐band Raman mapping measurements show that nanolaminate plasmonic nanocavities on vertical nanopillar arrays exhibit broadband uniform SERS performance with diffraction‐limited resolution at a single nanopillar footprint. By selective exposure of embedded plasmonic hotspots in individual metal–insulator–metal (MIM) nanogaps, nanoscale broadband SERS operation at the single MIM nanocavity level with visible and near‐infrared (vis–NIR) excitations is demonstrated. Numerical studies reveal that nanolaminate plasmonic nanocavities on vertical nanopillars can support multiple hybridized plasmonic modes to concentrate optical fields across a broadband wavelength range from 500 to 900 nm at the nanoscale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call