Domain-specific hardware to solve computationally hard optimization problems has generated tremendous excitement. Here, we evaluate probabilistic bit (p-bit) based Ising Machines (IM) on the 3-Regular 3-Exclusive OR Satisfiability (3R3X), as a representative hard optimization problem. We first introduce a multiplexed architecture that emulates all-to-all network functionality while maintaining highly parallelized chromatic Gibbs sampling. We implement this architecture in a single Field-Programmable Gate Array (FPGA) and show that running the adaptive parallel tempering algorithm demonstrates competitive algorithmic and prefactor advantages over alternative IMs by D-Wave, Toshiba, and Fujitsu. We also implement higher-order interactions that lead to better prefactors without changing algorithmic scaling for the XORSAT problem. Even though FPGA implementations of p-bits are still not quite as fast as the best possible greedy algorithms accelerated on Graphics Processing Units (GPU), scaled magnetic versions of p-bit IMs could lead to orders of magnitude improvements over the state of the art for generic optimization.
Read full abstract