Abstract
We describe a many-channel experiment control system based on a field-programmable gate array (FPGA). The system has 16 bit resolution on 10 analog 100 megasamples-per-second (MS/s) input channels, 14 analog 100 MS/s output channels, 16 slow analog input and output channels, dozens of digital inputs and outputs, and a touchscreen display for experiment control and monitoring. The system can support ten servo loops with 155ns latency and MHz bandwidths, in addition to as many as 30 lower bandwidth servos. We demonstrate infinite-impulse-response (IIR) proportional-integral-differential filters with 30ns latency by using only bit-shifts and additions. These IIR filters allow timing margin at 100 MS/s and use fewer FPGA resources than straightforward multiplier-based filters, facilitating many servos on a single FPGA. We present several specific applications: Hänsch-Couillaud laser locks with automatic lock acquisition and a slow dither correction of lock offsets, variable duty cycle temperature servos, and the generation of multiple synchronized arbitrary waveforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.