AbstractTo stabilize vitamin A in a cosmetic/dermatological formulation, we present here a new encapsulation method based on polymer microspheres having a localized “proton‐buffering” capacity. Poly(methyl methacrylate)‐g‐polyethylenimine (PMMA‐g‐PEI) was prepared by direct condensation grafting of PEI onto poly(methyl methacrylate‐co‐methyl acrylic acid). The reaction was confirmed by FT‐IR analysis showing the amide vibration at 1,550 cm−1. Elemental analysis indicated that the weight content of the grafted PEI was 1.6% (w/w). Vitamin A was encapsulated into PMMA‐g‐PEI microspheres by using an oil‐in‐water (O/W) single emulsion method. The presence of PEI moiety dramatically improved the chemical stability of vitamin A in microspheres. Vitamin A encapsulated within PMMA‐g‐PEI microspheres maintained 91% of its initial activity after 30‐day incubation at 40°C, while only maintaining 60% within plain PMMA microspheres. This study demonstrates that proton‐buffering within hydrophobic polymer matrix is a useful strategy for stabilizing “acid‐labile” active ingredients. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 517–522, 2004
Read full abstract