Single-cell DNA methylation sequencing technology has seen rapid advancements in recent years, playing a crucial role in uncovering cellular heterogeneity and the mechanisms of epigenetic regulation. As sequencing technologies have progressed, the quality and quantity of single-cell methylation data have also increased, making standardized preprocessing workflows and appropriate analysis methods essential for ensuring data comparability and result reliability. However, a comprehensive data analysis pipeline to guide researchers in mining existing data has yet to be established. This review systematically summarizes the preprocessing steps and analysis methods for single-cell methylation data, introduces relevant algorithms and tools, and explores the application prospects of single-cell methylation technology in neuroscience, hematopoietic differentiation, and cancer research. The aim is to provide guidance for researchers in data analysis and to promote the development and application of single-cell methylation sequencing technology.