Abstract
Over the last decade, single-cell genomics has revealed remarkable heterogeneity and plasticity of cell types in the lungs and airways. The challenge now is to understand how these cell types interact in three-dimensional space to perform lung functions, facilitating airflow and gas exchange while simultaneously providing barrier function to avoid infection. An explosion in novel spatially resolved gene expression technologies, coupled with computational tools that harness machine learning and deep learning, now promise to address this challenge. Here, we review the most commonly used spatial analysis workflows, highlighting their advantages and limitations, and outline recent developments in machine learning and artificial intelligence that will augment how we interpret spatial data. Together these technologies have the potential to transform our understanding of the respiratory system in health and disease, and we showcase studies in lung development, COVID-19, lung cancer, and fibrosis where spatially resolved transcriptomics is already providing novel insights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.