Abstract

Dysregulated DNA replication is a cause and a consequence of aneuploidy in cancer, yet the interplay between copy number alterations (CNAs), replication timing (RT) and cell cycle dynamics remain understudied in aneuploid tumors. We developed a probabilistic method, PERT, for simultaneous inference of cell-specific replication and copy number states from single-cell whole genome sequencing (scWGS) data. We used PERT to investigate clone-specific RT and proliferation dynamics in >50,000 cells obtained from aneuploid and clonally heterogeneous cell lines, xenografts and primary cancers. We observed bidirectional relationships between RT and CNAs, with CNAs affecting X-inactivation producing the largest RT shifts. Additionally, we found that clone-specific S-phase enrichment positively correlated with ground-truth proliferation rates in genomically stable but not unstable cells. Together, these results demonstrate robust computational identification of S-phase cells from scWGS data, and highlight the importance of RT and cell cycle properties in studying the genomic evolution of aneuploid tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.