Activated carbon is produced from Burmese grapes using NaOH as the activator under microwave irradiation. Through scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction analysis, and Brunauer–Emmett–Teller analysis methods, the activated carbon material is found to have a rough and uneven surface with the formation of pores, an amorphous structure, and possesses hydroxy, C–H, carbonyl, alkene, and ether functional groups. The surface area (478.5 m2 g−1) and pore size (about 3.4 nm) are calculated from the adsorption N2equation. The adsorption mechanism of activated carbon is evaluated and follows a pseudo-first-order kinetic model (large single adsorption) and the Langmuir isotherm model (physical interaction). The factors affecting ciprofloxacin adsorption using activated carbon derived from Burmese grapes are also evaluated and optimized by the response surface method model based on influencing factors including the contact time, the solution pH, the antibiotic concentration, and the material dosage. The optimal parameters are as follows: pH = 6.26, concentration = 58.9 mg L−1, content = 0.15 g L−1, time = 54 min. Under optimal conditions, the adsorption capacity predicted from the model is 191.33 mg g−1with an efficiency of 41.35%.
Read full abstract