The substitution of hazardous substances with safer alternatives is being driven by policy pressures and business demands. As a result, scientific techniques for chemical alternatives assessment (CAA) have been established and communities of practice are emerging. Interest in safer chemical substitution is widely shared throughout a range of stakeholder groups across science, industry, public policy, and advocacy. Yet there is an unmet need for intentionally designed public information infrastructure to support the highly knowledge-intensive nature of CAA. We report here on the process of developing the Chemical Hazard Data Commons, an experimental project intended to support a diverse community of practitioners by providing publicly accessible chemical hazard data and tools for understanding it. In an arena where market forces and regulatory regimes have largely failed to generate the necessary knowledge, this project represents a novel application of a commons-based approach emphasizing building shared intellectual and technical capacity for CAA. The Data Commons—now a part of the related Pharos Project—includes an online portal providing simultaneous access to many different sources of information and enabling effective interactions with it. Foremost among these interactions are search and retrieval of hazard information about chemical substances, uniform display of the most relevant information, and the ability to automatically screen substances against consistent and transparent hazard-based criteria. We describe the motivation for the project and report on the principles and key considerations that guided its design as a participatory information infrastructure. We present our approach to organizing chemical information; the process of community engagement and planning; and how we constructed the system to provide functional tools. We discuss the outcomes of the project and highlight important challenges—such as fostering active participation and planning for long-term governance. With this article, we hope to inform future efforts for the collaborative development of knowledge resources for chemical alternatives assessment.
Read full abstract