We present a novel method to facilely prepare magnetically recoverable AgCl/Fe3O4 @MIL-100(Fe) (ACFM) nanostructures for photocatalytic degradation of rhodamine B (RhB). The ACFM was directly prepared via a simple successive ionic layer adsorption and reaction (SILAR) deposition of MIL-100(Fe) on solvothermal synthesized Ag/Fe3O4 nanoparticles, in which process Ag was completely oxidized into AgCl concurrent with the formation of MIL-100(Fe). The ACFM prepared with 15 SILAR cycles exhibits 92.9% efficiency towards photodegrading RhB within 30 min under visible light illumination, which is higher than that of the individual structure of AgCl/Fe3O4, Ag/Fe3O4 @MIL-100(Fe) or Fe3O4 @MIL-100(Fe). The remarkably enhanced photocatalytic performance is attributed to the abundant active sites and sufficient visible light response of MIL-100(Fe), as well as effective charge separation at the heterojunction interface between AgCl and MIL-100(Fe). Furthermore, the obtained ACFM can be quickly separated from the pollutant solution with a magnet and possesses good stability for recycling photocatalysis. In light of the study, the ACFM nanostructures are believed to be applied as promising photocatalysts for practical applications.