Forest fires pose a significant threat to forest resources and wildlife. To balance accuracy and parameter efficiency in forest fire detection, this study proposes an improved model, Mcan-YOLO, based on YOLOv7. In the Neck section, the asymptotic feature pyramid network (AFPN) was employed to effectively capture multi-scale information, replacing the traditional module. Additionally, the content-aware reassembly of features (CARAFE) replaced the conventional upsampling method, further reducing the number of parameters. The normalization-based attention module (NAM) was integrated after the ELAN-T module to enhance the recognition of various fire smoke features, and the Mish activation function was used to optimize model convergence. A real fire smoke dataset was constructed using the mean structural similarity (MSSIM) algorithm for model training and validation. The experimental results showed that, compared to YOLOv7-tiny, Mcan-YOLO improved precision by 4.6%, recall by 6.5%, and mAP50 by 4.7%, while reducing the number of parameters by 5%. Compared with other mainstream algorithms, Mcan-YOLO achieved better precision with fewer parameters.
Read full abstract