Abstract

Main path analysis (MPA) is an important approach in detecting the trajectory of knowledge diffusion in a specific research domain. Previous studies always focus on citation-based relationships, overlooking other structural forms in citation network. This study introduces a multi-entity reinforced MPA model by constructing a knowledge graph from paper metadata, including citations, authors, journals, and keywords. We construct heterogeneous network to reveal relationships among various entities. Different knowledge graph embedding models are employed to train the network, thereby obtaining entity and relation embeddings. The cosine similarity algorithm is adopted to measure the knowledge proximity between these embeddings. We take the Internet of Thing domain as an example to verify the performance of the multi-entity reinforced MPA through both quantitative and qualitative analysis. Our findings indicate that the adjusted MPA exhibits stronger topic relevance, demonstrating the effectiveness of the method in capturing complex knowledge relationships.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.