Abstract

Our understanding of bird song, a model system for animal communication and the neurobiology of learning, depends critically on making reliable, validated comparisons between the complex multidimensional syllables that are used in songs. However, most assessments of song similarity are based on human inspection of spectrograms, or computational methods developed from human intuitions. Using a novel automated operant conditioning system, we collected a large corpus of zebra finches' (Taeniopygia guttata) decisions about song syllable similarity. We use this dataset to compare and externally validate similarity algorithms in widely-used publicly available software (Raven, Sound Analysis Pro, Luscinia). Although these methods all perform better than chance, they do not closely emulate the avian assessments. We then introduce a novel deep learning method that can produce perceptual similarity judgements trained on such avian decisions. We find that this new method outperforms the established methods in accuracy and more closely approaches the avian assessments. Inconsistent (hence ambiguous) decisions are a common occurrence in animal behavioural data; we show that a modification of the deep learning training that accommodates these leads to the strongest performance. We argue this approach is the best way to validate methods to compare song similarity, that our dataset can be used to validate novel methods, and that the general approach can easily be extended to other species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.