Hearing is vital for birds as they rely on acoustic communication with parents, mates, chicks and conspecifics. Amphibious seabirds face many ecological pressures, having to sense cues in air and underwater. Natural noise conditions have helped shape this sensory modality but anthropogenic noise is increasingly impacting seabirds. Surprisingly little is known about their hearing, despite their imperiled status. Understanding sound sensitivity is vital when we seek to manage the impacts of man-made noise. We measured the auditory sensitivity of nine wild Atlantic puffins, Fratercula arctica, in a capture-and-release setting in an effort to define their audiogram and compare these data with the hearing of other birds and natural rookery noise. Auditory sensitivity was tested using auditory evoked potential (AEP) methods. Responses were detected from 0.5 to 6 kHz. Mean thresholds were below 40 dB re.20 µPa from 0.75 to 3 kHz, indicating that these were the most sensitive auditory frequencies, similar to other seabirds. Thresholds in the 'middle' frequency range 1-2.5 kHz were often down to 10-20 dBre.20 µPa. The lowest thresholds were typically at 2.5 kHz. These are the first in-air auditory sensitivity data from multiple wild-caught individuals of a deep-diving alcid seabird. The audiogram was comparable to that of other birds of similar size, thereby indicating that puffins have fully functioning aerial hearing despite the constraints of their deep-diving, amphibious lifestyles. There was some variation in thresholds, yet animals generally had sensitive ears, suggesting aerial hearing is an important sensory modality for this taxon.