Climate assessments have largely overlooked the radiative effect of anthropogenic coarse particulate matter (PMcoarse, with an aerodynamic diameter between 2.5 and 10 µm) in China. Despite its similar mass concentration to fine particulate matter (PM2.5), anthropogenic sources of PMcoarse in China have been much less studied and typically underrepresented in models. Here, we present a new model simulation for PMcoarse in China that incorporates various anthropogenic sources. The model successfully captures the magnitude and distribution of observed PMcoarse and recently available aerosol optical depth measurements at near-infrared wavelengths, which are substantially underestimated if anthropogenic PMcoarse is not included. We find that anthropogenic PMcoarse exerts a cooling effect of -0.11 Wm−2 (-0.03 to -0.42 Wm−2) in China by aerosol–radiation interaction, capable of completely offsetting the warming effect from black carbon by 2060 under Dynamic Projection model for Emissions in China (DPEC) 1.1 scenario. We conclude that the radiative effect due to anthropogenic PMcoarse will likely dampen the warming penalty caused by the emission reduction of other aerosols in China and should be incorporated into climate models.