Wave-equation-based acquisition aperture correction in the local angle domain can improve image amplitude significantly in prestack depth migration. However, its original implementation is inefficient because the wavefield decomposition uses the local slant stack (LSS), which is demanding computationally. We propose a faster method to obtain the image and amplitude correction factor in the local angle domain using beamlet decomposition in the local wavenumber domain. For a given frequency, the image matrix in the local wavenumber domain for all shots can be calculated efficiently. We then transform the shot-summed image matrix from the local wavenumber domain to the local angle domain (LAD). The LAD amplitude correction factor can be obtained with a similar strategy. Having a calculated image and correction factor, one can apply similar acquisition aperture corrections to the original LSS-based method. For the new implementation, we compare the accuracy and efficiency of two beamlet decompositions: Gabor-Daubechies frame (GDF) and local exponential frame (LEF). With both decompositions, our method produces results similar to the original LSS-based method. However, our method can be more than twice as fast as LSS and cost only twice the computation time of traditional one-way wave-equation-based migrations. The results from GDF decomposition are superior to those from LEF decomposition in terms of artifacts, although GDF requires a little more computing time.