Artificial enzyme mimics based on nanomaterials have attracted sustained attention owing to their multiple advantages compared with natural enzymes. However, there are a few enzyme self-cascade systems for the highly sensitive detection of analytical targets. Herein, we have described a self-cascade catalytic system based on single-component cupric oxide nanoparticles (CuO NPs) for an ultrasensitive fluorescent detection toward glutathione (GSH) and Ag+ ions. The limit of detection is lower for nanomolar (nM) and picomolar (pM) levels for GSH and Ag+, respectively. To the best of our knowledge, for the first time, we find that CuO NPs possess the intrinsic GSH-oxidase and peroxidase-like activity as a dual-functional nanozyme, coupling with terephthalic acid (TA) and GSH to construct a self-cascade fluorescent system. The turn-on fluorescence signal of oxidation hydroxyterephthalate (TAOH) is generated in the presence of GSH. Then, the fluorescence of a reaction mixture is quenched after the addition of A...
Read full abstract