Abstract

Despite their practical applications, Ag+ ions are environmental pollutants and affect human health. So the effective detection methods of Ag+ ions are imperative. Herein, we developed a simple, sensitive, selective, and cost-effective fluorescence polarization sensor for Ag+ detection in aqueous solution using thiol-DNA-functionalized gold nanoparticles (AuNPs). In this sensing strategy, Ag+ ions can specifically interact with a cytosine-cytosine (CC) mismatch in DNA duplexes and form stable metal-mediated cytosine-Ag+-cytosine (C-Ag+-C) base pairs. The formation of the C-Ag+-C complex results in evident changes in the molecular volume and fluorescence polarization signal. To achieve our aims, we prepared two complementary DNA strands containing C-base mismatches (probe A: 5'-SH-A10-TACCACTCCTCAC-3' and probe B: 5'-TCCTCACCAGTCCTA-FAM-3'). The stable hybridization between probe A and probe B occurs with the formation of the C-Ag+-C complex in the presence of Ag+ ions, leading to obvious fluorescence quenching in comparison to the system without AuNP enhancement. The assay can be used to identify nanomolar levels of Ag+ within 6 min at room temperature, and has extremely high specificity for Ag+, even in the presence of higher concentrations of interfering metal ions. Furthermore, the sensor was successfully applied to the detection of Ag+ ions in environmental water samples and showed excellent selectivity and high sensitivity, implying its promising application in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.