ABSTRACTA self-aligned titanium silicide process which combines the use of ion-beam mixing and rapid thermal processing (RTP) has been developed for CMOS VLSI applications. Shallow silicided junctions are formed by implanting dopants into silicide layers previously formed by ion-beam mixing with Si ions and low temperature annealing, and the subsequent drive-in of the implanted ions into the Si substrate during high temperature RTP. In addition, the formation of TiN on TiSi2 is achieved simultaneously during this process as a diffusion barrier for Al metallization. Short-channel MOS transistors with SALICIDE structure have been successfully fabricated and tested. Results of the impurity diffusion in silicide layer, the impurity segregation at both silicide/Si and oxide/silicide interfaces, contact stabilit of Al/TiN/TiSi2 structure, and device characteristics will be reported. Issues related to this process and its application to submicron device fabrication are discussed and foreseeable problem areas identified.