As a type of useful solid waste, red mud (RM) should be reused to achieve waste-to-resource strategies. Additionally, the fast development of nuclear industry requires effective and reliable materials for treating uranium (U)-containing wastewater. This study attempted to remove uranyl ions [U(VI)] from mimic radioactive wastewater by various RM particles with different size fractions (e.g., >75, 45–75, 20–45, 10–20, 5–10, and <5-μm). Sorption data confirmed that the RM with a size fraction of <5-μm exhibited the largest adsorption capacity. The U removal behavior was favorably described by the pseudo-second-order model and Langmuir model. The mineral phases in the RM remarkably influenced U(VI) removal. Cancrinite, katoite, grossular, calcite, and calcium aluminum silicate phases made contributions to U(VI) adsorption. In addition, redox precipitation with iron-bearing minerals on RM surface also led to U(VI) adsorption. The findings of this work offer fundamental knowledge on the potential application of RM for clean-up of U(VI) from contaminated sites.