Abstract
The upgradation of the ilmenite ore, using a pyrometallurgy method, is performed using a carbothermic reduction of the ilmenite. A high titania slag is obtained which is used as a feedstock for the TiO2 pigment production. The slag is cooled after tapping in big molds and can take ten days to cool. This cooling method has remained the same since the inception of ilmenite smelting and recently rapid cooling through granulation has been utilized. The work presented in this paper focuses on the microstructural study of the slags that were prepared using different techniques and cooled at different cooling rates. Various analytical techniques, such as X-ray powder diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and X-ray photoelectron spectroscopy (XPS) were used to exhibit the similarity of these synthetic slags to the properties of high titania ilmenite slag. The slag consisted mostly of pseudo-brookite phase with a M3O5 stoichiometry and smaller amounts of silicate and rutile phase. A glassy phase of silica was observed and most of the impurities were found to be present in the silicate phase. These silica phases were observed to be separate from the pseudo-brookite phase and along the phase boundaries. Micro-cracking of the slag surface, which is the characteristic of the M3O5 phase formed in the ilmenite slag, were observed under the SEM analysis. The XPS analysis revealed that faster cooling does result in lower amount of oxidation but the difference in the TiO2 and Ti2O3 composition can have larger impact on oxidation than the cooling speed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have