The dispersion of silica in rubber systems and its interaction with rubber are two key factors in the preparation of rubber composites with excellent properties. In view of this, silica modified with terminal isocyanate-based polybutadiene liquid rubber (ITPB) is used to improve the dispersion effect of silica in rubber and enhance its interaction with the rubber matrix to improve the rubber's performance. The impact of different modification conditions on the dispersion of silica and the properties of modified silica-filled rubber composites were studied by changing the amount of ITPB and the modification method of silica, including blending and chemical grafting. The experimental results show that ITPB is successfully grafted onto silica, and the use of modified silica improves the cross-linking density of rubber, promotes the rate of rubber vulcanization, and overcomes the shortcomings of the delayed vulcanization of silica itself. When the ratio of ITPB liquid rubber to silica equals 1:20, the comprehensive performance of rubber is the best, the ITPB-modified silica has a better dispersion effect in rubber, and the rolling resistance is slightly improved, with tensile strength reaching 12.6 MPa. The material demonstrates excellent overall performance and holds promise for applications in the rail, automotive, and electrical fields.
Read full abstract