Abstract

The properties of both compounds and vulcanizates of silica-filled natural rubber (NR) compatibilized with epoxidized low molecular weight natural rubbers (ELMWNRs) consisting of 12 and 28 mol% epoxide are investigated. The ELMWNRs with a molecular weight range of 50,000 to 60,000 g/mol are produced by depolymerization of epoxidized natural rubber (ENR) latex using periodic acid, and then used as compatibilizer in a range of 0 to 15 phr in virgin NR. The compounds with LMWNR without epoxide groups, and with bis-(triethoxysilylpropyl) tetrasulfide (TESPT) coupling agent are also prepared for comparison purpose. Incorporation of ELMWNRs lowers Mooney viscosity and Payne effect to the level closed to that of silica/TESPT compound, and clearly enhances the modulus and tensile strength of vulcanizates compared to the compounds with no compatibilizer and LMWNR. The higher epoxide groups content results in the better tensile properties but somewhat less than the compound with TESPT. Addition of extra sulfur into the compounds with LMWNR and ELMWNRs to compensate for the sulfur released from silane molecule in the silica/TESPT system shows small influence on Mooney viscosity, but remarkably enhances 300% modulus, tensile strength and loss tangent at 60°C as a result of the better network formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.