To examine the color stability of 3D-printed and milled, interim, and definitive, restorative materials after immersion in artificial saliva and wine for 1, 3, and 6 months. The study used a 2 × 5 factorial design with 10 subgroups, including 2 immersion liquids (artificial saliva and wine) and 5 manufacturing technology and restorative material combinations (n = 10). Color measurements were taken using a contact-type digital spectrophotometer (CM-2600d Spectrophotometer; Konica Minolta Healthcare Americas Inc) before immersion and at 1 month (T1), 3 months (T3), and 6 months (T6) after immersion. The CIE2000 system was used to calculate quantitative measurements of color differences in ΔE00, and comparisons were made to the acceptability threshold (AT) and perceptibility threshold (PT). Repeated measures of ANOVA (α = 0.05) were used to compare differences in color changes between manufacturing technology/restorative material-immersion liquid combinations at T1, T3, and T6. To compare the effect of immersion liquid and time on the manufacturing technology/restorative material groups, the ΔE00 values were compared to the PT of 0.8 and the AT of 1.8. Wine caused significant color changes in ΔE00 values beyond the PT and AT values in all groups at all time intervals, except for the AT value of milled definitive crowns (hybrid nano-ceramic material). Wine immersion caused significant ΔE00 for all manufacturing technology/restorative material groups at all time intervals (1 month, 3 months, and 6 months) when compared to artificial saliva immersion (all p < 0.001). Upon exposure to artificial saliva, 80%-100% of samples from all groups remained within the acceptable and perceptible color change thresholds. The wine had significant chromogenic effects on all tested restorative materials, however, the milled definitive crowns (hybrid nano-ceramic material) showed the greatest color stability. For patients with heavy wine consumption, 3D-printed definitive crowns (hybrid ceramic-filled material) may show discoloration exceeding acceptable and perceptible color change limits.
Read full abstract