The functional role of 1,25-vitamin D3 in cooking oil fumes (COFs)-derived PM2.5-induced cell damage is largely unexplored. The present study investigated the protective role of 1,25-vitamin D3 against cell injury by possible involvement of JAK/STAT and NF-κB signaling pathways in cardiomyocytes. Cell viability was measured using CCK-8 assay, and cell apoptosis was analyzed by flow cytometry, qRT-PCR and Western blot in cultured rat neonatal cardiomyocytes treated with 1,25-vitamin D3 and COFs-derived PM2.5. Expressions of JAK/STAT and NF-κB signaling pathway were measured by Western blot. The results suggested that treatment with COFs-derived PM2.5 significantly decreased cell viability and increased apoptosis and oxidative stress in cultured rat neonatal cardiomyocytes. 1,25-vitamin D3 pretreatment alleviated the cell injury by increasing cell viability and decreasing apoptosis in the cardiomyocytes. 1,25-vitamin D3 pretreatment also decreased the ROS level and inflammation in the cardiomyocytes. Furthermore, 1,25-vitamin D3 pretreatment alleviated COFs-derived PM2.5-evoked elevation of JAK/STAT and NF-κB signaling pathways. Our study showed that 1,25-vitamin D3 pretreatment protected cardiomyocytes from COFs-derived PM2.5-induced injury by decreasing ROS, apoptosis and inflammation level via activations of the JAK/STAT and NF-κB signaling pathways.
Read full abstract