Plants control their stomatal apertures to optimize carbon dioxide uptake and water loss. Stomata open in response to light through the phosphorylation of the penultimate residue, Thr, of plasma membrane (PM) H+-ATPase in guard cells. Stomata close in response to drought and the phytohormone abscisic acid (ABA), and ABA suppresses the light-induced activation of PM H+-ATPase. However, the signaling pathways that regulate the stomatal aperture remain unclear. Previously, we identified a target of rapamycin (TOR) inhibitor, temsirolimus, to induce stomatal opening through chemical screening. In the present study, we further investigated other TOR inhibitors and identified PP242 as a novel stomatal opening chemical. PP242 induced stomatal opening even in the dark, as well as phosphorylation of the penultimate Thr of PM H+-ATPase in guard cells. Interestingly, PP242 completely suppressed ABA-induced stomatal closure, and inhibited ABA-induced activation of SNF1-related protein kinase 2s (SnRK2s), which are essential kinases for ABA signal transduction in guard cells. In vitro biochemical analysis revealed that PP242 did not directly inhibit SnRK2 but rather inhibited upstream ABA signaling components, specifically B3 clade Raf-like kinases. A quadruple mutant of B3 clade Raf-like kinases exhibited an open stoma phenotype that resembled the effect of PP242. However, PP242 still induced stomatal opening in this mutant, suggesting that PP242 also targets other guard cell components. Together, these results reveal that PP242 induces stomatal opening partly by inhibiting steady-state ABA signal transduction.
Read full abstract