Abstract

Plant guard cells gate CO2 uptake and transpirational water loss through stomatal pores. As a result of decades of experimental investigation, there is an abundance of information on the involvement of specific proteins and secondary messengers in the regulation of stomatal movements and on the pairwise relationships between guard cell components. We constructed a multi-level dynamic model of guard cell signal transduction during light-induced stomatal opening and of the effect of the plant hormone abscisic acid (ABA) on this process. The model integrates into a coherent network the direct and indirect biological evidence regarding the regulation of seventy components implicated in stomatal opening. Analysis of this signal transduction network identified robust cross-talk between blue light and ABA, in which [Ca2+]c plays a key role, and indicated an absence of cross-talk between red light and ABA. The dynamic model captured more than 1031 distinct states for the system and yielded outcomes that were in qualitative agreement with a wide variety of previous experimental results. We obtained novel model predictions by simulating single component knockout phenotypes. We found that under white light or blue light, over 60%, and under red light, over 90% of all simulated knockouts had similar opening responses as wild type, showing that the system is robust against single node loss. The model revealed an open question concerning the effect of ABA on red light-induced stomatal opening. We experimentally showed that ABA is able to inhibit red light-induced stomatal opening, and our model offers possible hypotheses for the underlying mechanism, which point to potential future experiments. Our modelling methodology combines simplicity and flexibility with dynamic richness, making it well suited for a wide class of biological regulatory systems.

Highlights

  • Stomata are small pores located in the epidermes of plants that allow carbon dioxide (CO2) uptake for photosynthesis as well as diffusion of O2, produced by photosynthetic reactions, from the plant to the atmosphere

  • Stomata are bordered by pairs of guard cells, the swelling of which leads to stomatal opening, while their shrinking leads to stomatal closure

  • Malate exits the cytosol and enters the apoplast through active anion efflux channels (AnionCh); this is represented by an edge from AnionCh incident on the edge that starts from cytosolic malate and ends in apoplastic malate

Read more

Summary

Introduction

Stomata are small pores located in the epidermes of plants that allow carbon dioxide (CO2) uptake for photosynthesis as well as diffusion of O2, produced by photosynthetic reactions, from the plant to the atmosphere. They are the sites of water vapour loss through transpiration. As stomatal aperture regulation has a major impact on both the hydration status and the photosynthetic status of the plant, guard cells’ sensitivity to stimuli is vital to the survival of vascular terrestrial plants. Better understanding of the signalling and regulatory networks involved in stomatal responses is a necessary step toward improving the drought tolerance of crops

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call