Independent vector analysis (IVA) is a recently proposed technique, an application of which is to solve the frequency domain blind source separation problem. Compared with the traditional complex-valued independent component analysis plus permutation correction approach, the largest advantage of IVA is that the permutation problem is directly addressed by IVA rather than resorting to the use of an ad hoc permutation resolving algorithm after a separation of the sources in multiple frequency bands. In this article, two updates for IVA are presented. First, a novel subband construction method is introduced, IVA will be conducted in subbands from high frequency to low frequency rather than in the full frequency band, the fact that the inter-frequency dependencies in subbands are stronger allows a more efficient approach to the permutation problem. Second, to improve robustness and against noise, the IVA nonlinearity is calculated only in the signal subspace, which is defined by the eigenvector associated with the largest eigenvalue of the signal correlation matrix. Different experiments were carried out on a software suite developed by us, and dramatic performance improvements were observed using the proposed methods. Lastly, as an example of real-world application, IVA with the proposed updates was used to separate vibration components from high-speed train noise data.