Milled wood lignin (MWL) and acetic and formic acid lignin (AL and FL) from Miscanthus x giganteus bark were produced, respectively, before and after organosolv fractionations under optimal conditions, in terms of organic and hydrochloric acid concentrations, liquid/wood ratio, and reaction time. In order to study the M. x giganteus native lignin structure and its modifications during the fractionation process, the lignins were studied by two-dimensional heteronuclear single quantum coherence (2D-(HSQC)), (13)C- and (31)P nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR), size-exclusion chromatography (SEC) both before and after thioacidolysis, and elemental analysis. In addition, chemical composition analysis was performed on ash, Klason lignin, and carbohydrate content. The analyses demonstrated that M. x giganteus native lignin (MWL) is highly acylated at the C(gamma) of the lignin side chain (46%), possibly with p-coumarate and/or acetate groups. This is newsworthy since several earlier studies showed that acylation at the gamma-carbon commonly occurs in C(3) and CAM grasses, whereas M. x giganteus is a C(4) grass. Furthermore, M. x giganteus showed a low S/G ratio (0.7) and a predominance of beta-O-4' linkages (up to 93% of all linkages). AL and FL lose part of these linkages during organosolv fractionation (up to 21 and 32%, respectively). The p-coumarate groups resist fractionation processes and are still present in high quantities in AL and FL. During the fractionation process, lignin is acetylated (acetic acid process) and condensed, with the G units condensing more than S units. M. x giganteus MWL contains a high content of carbohydrates (22.8%), suggesting that it is a lignin-carbohydrate complex (LCC). AL and FL showed low carbohydrate contents because of the breaking down of the LCC structures. AL and FL have high molecular weights and low polydispersities, and are high in phenolic content, qualities that make these suitable for different applications. These results suggest that refinement of M. x giganteus via organosolv processes could potentially turn this grass into a valuable source of both fiber and lignin.
Read full abstract