Previous article Next article Perturbation Analysis of Diffusion-Coupled Biochemical Reaction KineticsL. W. RossL. W. Rosshttps://doi.org/10.1137/0119029PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] B. Atkinson, , E. L. Swilley, , A. W. Bush and , D. A. Williams, Kinetics, mass transfer and organism growth in a biological film reactor, Trans. Inst. Chem. Engrg., 45 (1967), T257–T264 Google Scholar[2] B. Atkinson and , I. S. Daoud, The analogy between micro-biological “reactions” and heterogeneous catalysis, Trans. Inst. Chem. Engrg., 46 (1968), T19–T24 Google Scholar[3] B. Atkinson, , I. S. Daoud and , D. A. Williams, A theory for the biological film reactor, Trans. Inst. Chem. Engrg., 46 (1968), T245–T250 Google Scholar[4] H. S. Carslaw and , J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, London, 1969, Chap. 2 Google Scholar[5] T. L. Miller and , M. J. Johnson, Utilization of normal alkanes by yeasts, Biotech. Bioengrg., 8 (1966), 549–565 10.1002/bit.260080408 CrossrefISIGoogle Scholar[6] L. S. Revelle, , W. R. Lynn and , M. A. Rivera, Bio-oxidation kinetics and a second-order equation describing the BOD reaction, J. Water Poll. Contr. Fed., 37 (1965), 1679–1692 Google Scholar[7] H. S. Tsien, The Poincaré-Lighthill-Kuo methodAdvances in applied mechanics, vol. IV, Academic Press Inc., New York, N.Y., 1956, 281–349 MR0079929 (18,167f) CrossrefGoogle Scholar[8] V. P. Vorotlin, , V. S. Krylov and , V. G. Levich, On the theory of extraction from a falling drop, Priklad. Mat. Mekh., 29 (1965), 386–394 Google Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Numerical solution to a nonlinear McKendrick-Von Foerster equation with diffusion29 June 2022 | Numerical Algorithms, Vol. 41 Cross Ref Ground-state nodal solutions for superlinear perturbations of the Robin eigenvalue problem11 February 2022 | Zeitschrift für angewandte Mathematik und Physik, Vol. 73, No. 2 Cross Ref EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO ELLIPTIC PROBLEMS WITH SUBLINEAR MIXED BOUNDARY CONDITIONS20 November 2011 | Communications in Contemporary Mathematics, Vol. 11, No. 04 Cross Ref Numerical Methods for Quasi‐Linear Elliptic Equations with Nonlinear Boundary ConditionsC. V. Pao7 May 2007 | SIAM Journal on Numerical Analysis, Vol. 45, No. 3AbstractPDF (269 KB)Finite difference reaction diffusion equations with nonlinear boundary conditionsNumerical Methods for Partial Differential Equations, Vol. 11, No. 4 Cross Ref Existence of Quasi-Solutions of Systems of Nonlinear Elliptic BVP’s Suggested by Biochemical Reactions Cross Ref Optimal Control for a Class of Integral Equations Cross Ref Positive solutions of a nonlinear boundary-value problem of parabolic typeJournal of Differential Equations, Vol. 22, No. 1 Cross Ref Identification of dynamic zones in batch fermentationsBiotechnology and Bioengineering, Vol. 16, No. 4 Cross Ref Kinetics of diffusion-coupled fermentation processes: The conversion of cellulose to proteinBiotechnology and Bioengineering, Vol. 13, No. 1 Cross Ref Volume 19, Issue 2| 1970SIAM Journal on Applied Mathematics History Submitted:15 July 1969Published online:17 February 2012 InformationCopyright © 1970 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0119029Article page range:pp. 323-329ISSN (print):0036-1399ISSN (online):1095-712XPublisher:Society for Industrial and Applied Mathematics