Abstract
This paper is concerned with the nonlinear boundary value problem (1) $\beta u''-u'+f(u)=0$, (2) $u'(0)-au(0)=0,u'(1)=0$, where $f(u)=b(c-u)\exp(-k/(1+u))$ and $\beta,a,b,c,k$ are constants. First a formal singular perturbation procedure is applied to reveal the possibility of multiple solutions of (1) and (2). Then an iteration procedure is introduced which yields sequences converging to the maximal solution from above and the minimal solution from below. A criterion for a unique solution of (1), (2) is given. It is mentioned that for certain values of the parameters multiple solutions have been found numerically. Finally, the stability of solutions of (1), (2) is discussed for certain values of the parameters. A solution $u(x)$ of (1), (2) is said to be stable if the first eigenvalue $\sigma$ of the variational equations $(1)' \beta v''-v'+[\sigma\beta+f'(u)]v=0$ and $(2)' v'(0)-av(0)=0, v'(1)=0$, is positive.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have