Sialic acids are key determinants in many carbohydrates involved in biological recognition. We studied the acceptor specificities of three cloned sialyltransferases (STs) [alpha2,3(N)ST, alpha2,3(O)ST, and alpha2,6(N)ST] and another alpha2,3(O)ST present in prostate cancer cell LNCaP toward mucin core 2 tetrasaccharide [Galbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-Bn] and Globo [Galbeta1,3GalNAcbeta1,3Galalpha-O-Me] structures containing sialyl, fucosyl, sulfo, methyl, or fluoro substituents by identifying the products by electrospray ionization tandem mass spectral analysis and other biochemical methods. The Globo precursor was an efficient acceptor for both alpha2,3(N)ST and alpha2,3(O)ST, whereas only alpha2,3(O)ST used its deoxy analogue (d-Fucbeta1,3GalNAcbeta1,3-Gal-alpha-O-Me); 2-O-MeGalbeta1,3GlcNAc and 4-OMeGalbeta1,4GlcNAc were specific acceptors for alpha2,3(N)ST. Other major findings of this study include: (i) alpha2,3 sialylation of beta1,3Gal in mucin core 2 can proceed even after alpha1,3 fucosylation of beta1,6-linked LacNAc. (ii) Sialylation of beta1,3Gal must precede the sialylation of beta1,4Gal for favorable biosynthesis of mucin core 2 compounds. (iii) alpha2,3 sialylation of the 6-O-sulfoLacNAc moiety in mucin core 2 (e.g., GlyCAM-1) is facilitated when beta1,3Gal has already been alpha2,3 sialylated. (iv) alpha2,6(N)ST was absolutely specific for the beta1,4Gal in mucin core 2. Either alpha1,3 fucosylation or 6-O-sulfation of the GlcNAc moiety reduced the activity. Sialylation of beta1,3Gal in addition to 6-O-sulfation of GlcNAc moiety abolished the activity. (v) Prior alpha2,3 sialylation or 3-O-sulfation of beta1,3Gal would not affect alpha2,6 sialylation of Galbeta1,4GlcNAc of mucin core 2. (vi) A 3- or 4-fluoro substituent in beta1,4Gal resulted in poor acceptors for the cloned alpha2,6(N)ST and alpha2,3(N)ST, whereas 4-fluoro- or 4-OMe-Galbeta1,3GalNAcalpha was a good acceptor for cloned alpha2,3(O)ST. (vii) 4-O-Methylation of beta1,4Gal abolished the acceptor ability toward alpha2,6(N)ST but increased the acceptor efficiency considerably toward alpha2,3(N)ST. (viii) Just like LNCaPalpha1,2-FT and Gal-3-O-sulfotransferase T2, the cloned alpha2,3(N)ST which modifies terminal Gal in Galbeta1,4GlcNAc also efficiently utilizes the terminal beta1,3Gal in the Globo backbone. Utilization of C-3 blocked compounds such as 3-O-sulfo-Galbeta1,3GalNAcbeta1,3Galalpha-OMe as acceptors by cloned alpha2,3(O)ST and analyses of the resulting products by lectin chromatography and mass spectrometry indicate that alpha2,3(O)ST is capable of attaching NeuAc to another position in C-3-substituted beta1,3Gal.
Read full abstract