Abstract

[reaction: see text] Sialyltransferases (STs) are involved in the biosynthesis of glycoconjugates with important biological activities. Most STs utilize cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) as a common donor substrate. A bisubstrate analogue containing the donor substrate (CMP-Neu5Ac mimic) and the acceptor substrate (galactose) was synthesized. Four donor analogues having the partial structure of the bisubstrate analogue were also synthesized to support study of the structure-activity relationship. Each analogue contains an ethylene group in place of the exocyclic anomeric oxygen of CMP-Neu5Ac. The bisubstrate analogue exhibited only weak inhibitory activity to rat recombinant alpha-2,3- and alpha-2,6-ST (IC(50) = 1.3, 2.4 mM). Conversion of the C-1 carboxylate of the Neu5Ac moiety to carboxyamide, hydroxymethyl, or methylene phosphate each resulted in a reduction in inhibitory activity. Among the synthesized analogues, cytidin-5'-yl sialylethylphosphonate (4) was the most potent inhibitor against rat recombinant alpha-2,3- and alpha-2,6-ST (IC(50) = 0.047, 0.34 mM).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.