A design technique for an over-10-Gb/s clock and data recovery (CDR) IC provides good jitter tolerance and low jitter. To design the CDR using a PLL that includes a decision circuit with a certain phase margin affecting the pull-in performance, we derived a simple expression for the pull-in range of the PLL, which we call the limited pull-in range, and used it for the pull-in performance evaluation. The method allows us to quickly and easily compare the pull-in performance of a conventional PLL with a full-rate clock and a PLL with a half-rate clock, and we verified that the half-rate PLL is advantageous because of its wider frequency range. For verification of the method, we fabricated a half-rate CDR with a 1:16 DEMUX IC using commercially available Si bipolar technology with f/sub T/=43 GHz. The half-rate clock technique with a linear phase detector, which is adopted to avoid using the binary phase detector often used for half-rate CDR ICs, achieves good jitter characteristics. The CDR IC operates reliably up to over 15 Gb/s and achieves jitter tolerance with wide margins that surpasses the ITU-T specifications. Furthermore, the measured jitter generation is less than 0.4 ps rms, which is much lower than the ITU-T specification. In addition, the CDR IC can extract a precise clock signal under harsh conditions, such as when the bit error rate of input data is around 2/spl times/10/sup -2/ due to a low-power optical input of -24 dBm.
Read full abstract