Aluminum-doped zinc oxide (AZO) thin films were prepared by radio frequency (RF) sputtering at room temperature, and then post-treated by hydrogen (H2) plasma at different durations. After H2 plasma treatment under the condition of 10 W, 200 °C and 3.0 Hours, the resistivity showed a dramatically decrease from 1.6 Ω cm to 3.4 × 10−3 Ω cm, while the transmittance at the wavelength of 550 nm was improved from 90.5% to 96.0%. The optical constants of H2 plasma-treated AZO thin films were detailed characterized by a varied angle spectroscopic ellipsometer. The results show that the refractive index n decreases in the entire measured wavelength range of 350–1100 nm, while the extinction coefficient k decreases in the short wavelength range and changes negligibly at the long wavelength range. These results can provide guidelines for the design and optimization of AZO thin film-based optoelectronic applications.
Read full abstract