In vivo drug dissolution kinetics of BCS Class 2a IR solid oral drug products remains largely unknown. An understanding to what extent the solubility influences in vivo dissolution is needed to design appropriate in vitro dissolution methods. In this study, nonsteroidal anti-inflammatory drugs (NSAIDs) are used to investigate the in vivo dissolution of BCS Class 2a drugs based on numerical deconvolution analyses. The PK data were obtained from published literature or drug applications submitted to the FDA. It has been hypothesized that the in vivo drug dissolution rate would likely correlate to the solubility of NSAIDs in the media at gastrointestinal pH. Our findings show a short lag time of absorption (Tlag), comparable to the liquid gastric emptying time and independent of the solubility and formulation. In Vivo drug dissolution of NSAIDs was generally rapid and complete within the regular drug residence time in the small intestine while multi-phase absorption was observed in some subjects for all the NSAIDs. The comparisons of in vivo drug dissolution rate, which was characterized by in vivo dissolution half-life (Thalf), indicate that solubility has a minimal impact on in vivo drug dissolution rate for NSAIDs. Gastric emptying regulated by migrating motor complex (MMC) under fasted state most likely governs drug dissolution and absorption of NSAIDs. For BCS Class 2a IR solid oral drug products, large variability of gastric emptying and MMC as well as the strong driving force of intestinal absorption probably outweigh the impact of solubility on drug in vivo dissolution.
Read full abstract