Abstract
Various mathematical Black-Scholes-Merton-like models of option pricing employ the paradigmatic stochastic process of geometric Brownian motion (GBM). The innate property of such models and of real stock-market prices is the roughly exponential growth of prices with time [on average, in crisis-free times]. We here explore the ensemble- and time averages of a multiplicative-noise stochastic process with power-law-like time-dependent volatility, σ(t)∼t^{α}, named scaled GBM (SGBM). For SGBM, the mean-squared displacement (MSD) computed for an ensemble of statistically equivalent trajectories can grow faster than exponentially in time, while the time-averaged MSD (TAMSD)-based on a sliding-window averaging along a single trajectory-is always linear at short lag times Δ. The proportionality factor between these the two averages of the time series is Δ/T at short lag times, where T is the trajectory length, similarly to GBM. This discrepancy of the scaling relations and pronounced nonequivalence of the MSD and TAMSD at Δ/T≪1 is a manifestation of weak ergodicity breaking for standard GBM and for SGBM with σ(t)-modulation, the main focus of our analysis. The analytical predictions for the MSD and mean TAMSD for SGBM are in quantitative agreement with the results of stochastic computer simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.