Change blindness is a phenomenon of visual attention, whereby changes to a visual display go unnoticed under certain specific circumstances. While many laboratory procedures have been developed that produce change blindness in humans, the flicker paradigm has emerged as a particularly effective method. In the flicker paradigm, two visual displays are presented in alternation with one another. If successive displays are separated by a short inter-stimulus interval (ISI), change detection is impaired. The simplicity of the procedure and the clear, performance-based operational definition of change blindness make the flicker paradigm well-suited to comparative research using nonhuman animals. Indeed, a variant has been developed that can be implemented in operant chambers to study change blindness in pigeons. Results indicate that pigeons, like humans, are worse at detecting the location of a change if two consecutive displays are separated in time by a blank ISI. Furthermore, pigeons' change detection is consistent with an active, location-by-location search process that requires selective attention. The flicker task thus has the potential to contribute to investigations of the dynamics of pigeons' selective spatial attention in comparison to humans. It also illustrates that the phenomenon of change blindness is not exclusive to humans' visual perception, but may instead be a general consequence of selective attention. Finally, while the useful aspects of attention are widely appreciated and understood, it is also important to acknowledge that they may be accompanied by specific imperfections such as change blindness, and that these imperfections have consequences across a wide range of contexts.
Read full abstract