Phosphorus constitutes a crucial macronutrient for crop growth, yet its availability often limits food production. Efficient phosphorus management is crucial for enhancing crop yields and ensuring food security. This study aimed to enhance the efficiency of a short-chain polyphosphate (PolyP) fertilizer by integrating it with plant growth-promoting bacteria (PGPB) to improve nutrient solubilization and wheat growth. Specifically, the study investigated the effects of various bacterial strains on wheat germination and growth when used in conjunction with PolyP. To achieve this, a greenhouse experiment was conducted in which the wheat rhizosphere was amended with a short-chain PolyP fertilizer. Based on the morphological aspect, eight bacteria, designated P1 to P8, were isolated and further characterized. Plant growth-promoting traits were observed in all bacterial strains, as they presented the ability to produce Indole Acetic Acid (IAA) in significant amounts ranging from 7.5 ± 0.3 µg/mL to 44.1 ± 2 µg/mL, expressed by B. tropicus P4 and P. soyae P1, respectively. They also produced ammonia, hydrogen cyanide (HCN), and siderophores. Their effect against the plant pathogen Fusarium culmorum was also assessed, with P. reinekei P2 demonstrating the highest biocontrol activity as it presented a total inhibitory effect. Additionally, some strains exhibited the ability to solubilize/hydrolyze phosphorus, potassium, and zinc. In vivo, the initial growth potential of wheat seeds indicated that those inoculated with the isolated strains exhibited elevated germination rates and enhanced root growth. Based on their plant growth-promoting traits and performance in the germination assay, three strains were selected for producing the best results, specifically phosphorus hydrolyzation/solubilization, zinc solubilization, IAA production, HCN, and siderophores production. Wheat seeds were inoculated by drenching in a bacterial suspension containing 1010 CFU/mL of log phase culture, and an in planta bioassay was conducted in a growth chamber using three selected strains (Pseudomonas soyae P1, Pseudomonas reinekei P2, and Bacillus tropicus P4), applied either individually or with PolyP on a P-deficient soil (28 mg/kg of P Olsen). Our findings demonstrated that the combination of Pseudomonas soyae P1 and PolyP achieved the highest shoot biomass, averaging 41.99 ± 0.87 g. Notably, applying P. soyae P1 or Bacillus tropicus P4 alone yielded similar results to the use of PolyP alone. At the heading growth stage, the combination of Bacillus tropicus P4 and PolyP significantly increased the Chlorophyll Content Index (CCI) to 37.02 µmol/m2, outperforming both PolyP alone (24.07 µmol/m2) and the control (23.06 µmol/m2). This study presents an innovative approach combining short-chain PolyP with bacterial biostimulants to enhance nutrient availability and plant growth. By identifying and characterizing effective bacterial strains, it offers a sustainable alternative to conventional fertilizers.
Read full abstract