Abstract
Phenotypes are established by tight regulation on protein functions. This regulation can be mediated allosterically, through protein binding, and covalently, through post-translational modification (PTM). The integration of an ever-increasing number of PTMs into regulatory networks enables and defines the proteome complexity. Protein PTMs can occur enzymatically and nonenzymatically. Polyphosphorylation, which is a recently discovered PTM that belongs to the latter category, is the covalent attachment of the linear ortho-phosphate polymer called inorganic polyphosphate (polyP) to lysine residues. PolyP, which is ubiquitously present in nature, is also known to allosterically control protein function. To date, lack of reagents has prevented the systematic analysis of proteins covalently and/or allosterically associated with polyP. Here, we report on the chemical synthesis of biotin-modified monodisperse short-chain polyP (bio-polyP8-bio) and its subsequent use to screen a human proteome array to identify proteins that associate with polyP, thereby starting to define the human polyP-ome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.